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This paper describes a generalization of the Lanczos algorithm to make it applicable 
directly to the generalized matrix eigenvalue problem Ax = 1Ex, where A, B are real 
symmetric matrices of high order (n x n) and B is positive definite. The algorithm is based on 
the construction of a sequence of B-orthonormal vectors b, ; if U, = (b, ,..., bp) then the eigen- 
values of the p x p matrix CILAU, (p < n) approximate some of the extreme eigenvalues of 
the original problem, Ax = iBx. 

1. INTRODUCTION 

Frequently problems in quantum mechanics, for example, configuration interaction 
calculations of atomic or molecular correlation energies, or numerical solution of 
vibrational problems using the method of finite elements, lead to the computation of a 
small number of eigenvalues and associate eigenvectors, usually the extreme ones, of 
the problem 

Ax = /iBx (1.1) 

where A and B are real symmetric and sparse matrices of high order and B is positive 
definite. In these cases classical diagonalization methods 18 ] are impractical. 

As it is known Lanczos’ algorithm cannot be applied to (1.1) unless matrix B can 
be factored, B = LL’ [4]. Then the usual Lanczos algorithm can be applied 
straightforwardly to the implicitly defined matrix L ‘AL --I. In cases where matrix B 
cannot be factored easily, B being of very high order, we can again apply Lanczos’ 
scheme to the implicitly defined matrix B -‘A [4]. However, in this case we have to 
solve a linear system for matrix B in every iteration, which is not convenient. Of 
interest is the iterative method proposed by Nesbet [3] for finding the extreme eigen- 
solution based on the minimization of the Rayleigh quotient which was later 
improved by Shavitt et al. [6] for the calculation of several of the extreme eigen- 
solutions. Also a method developed by Davidson [ 11 has been applied to the 
generalized eigenvalue problem in [2] for symmetric matrices and recently in 15 1 for 
unsymmetric matrices with real eigenvalues. 

In what follows we describe an explicitly orthogonalized Lanczos-type method for 
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constructing a sequence of B-orthonormal vectors and approximate the eigenvalues of 
the original problem (1.1) from the eigenvalues of the restriction of A into the 
subspace spanned by those vectors. That is, if UP is the n x p matrix whose columns 
are the vectors derived in the course of the process, such that UL BU, = I, then the 
eigenvalues of the p x p matrix A, = UiAU, approximate some of the extreme eigen- 
values of (1.1). The method developed here can be used to approximate both the 
largest and smallest eigenvalues and requires no inversion avoiding any complications 
of an ill-conditioned B. Although the process should theoretically produce the exact 
solution in n steps it is well known that a satisfactory accuracy is often achieved for 
values ofp much less than n. The only drawback is that the vectors bi have to be kept 
somewhere in an auxiliary storage device for the formation of the new vector in every 
iteration and the elements of A,. Because A, is a full matrix its dimension p cannot 
be chosen as large as to provide a desired accuracy. The only way to overcome this 
difficulty is to use the algorithm in an iterative manner restarting after a certain 
number of iterations. The method works with the original matrices unchanged so their 
sparsity is taken into account to full extent. Hence no rounding errors are introduced 
by any transformation. Rounding errors due to the recursive computation can be 
eliminated, if necessary, by restarting the process. 

Good approximations to the eigenvectors can be obtained by using the vectors b,, 
i = I,..., p. which are held in backing store. 

In the following we shall use the B-norm for a vector X, defined by 
/JxI(~ = (x, Bx)“‘. 

In Section 2 we give a description of the algorithm and in Section 3 some 
numerical results to demonstrate the behaviour of the method in practice. 

2. DESCRIPTION OF THE ALGORITHM 

Given a real symmetric matrix A of order n x n, a positive definite symmetric 
matrix B of the same order and a system of orthonormal vectors Up = (6, ,..., bp) 
(n x p), the projection method on the subspace spanned by U,, 121 is approximating 
an eigensolution 1, x of the problem (1.1) by ACp), xCp) such that xtp) E Span(U,) and 
AX(~) - Lcp)Bx’p’ is orthogonal to all bj, j = l,..., p. The eigenvector xCp) is then 
writen xCp) = U,y’p’, where LCp’, yCp’ are the eigenelements of the generalized eigen- 
value problem 

(A P - L’P’B ) y’p’ = 0 P 

where the matrices A,, B, of order p x p are defined by A, = UiA Up and 
B, = U~BU,. The solutions A’“‘, yCp’ of (2.1) are usually referred to as the Ritz 
values and Ritz vectors of (1.1). However, in applications it is more convenient if BP 
reduces to the unit matrix, in other words, if the vectors bi, i = l,..., p, are B- 
orthonormal. In this case the projection method on Up where bi are now B- 
orthonormal aims to approximate A, x by a pair iCp’, xCp) such that xtp) E Span(U,) 
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and (A - k@‘I) x’~) is B-orthogonal to b,, i = l,..., p. Once again x’~) = U,Y’~‘, 
where Iz@), y(P) are now the eigenelements of the single p x p eigenvalue problem 

(Ap - A’P’Z) y’P’ = 0. 

The above description can be stated in an algorithm as follows. 

Algorithm I. Start with a vector b, f 0 such that b: Bb, = 1. For j = 1, 2,... do: 

(a) Solve the j X j eigenproblem Aj y’,” = L’.“y”‘. 

(b) Form the new vector as the residual 

qj+l =AUiy’i) -/pujy’.“. (2.2) 

(c) B-orthogonalize qj+, to the previous vectors. 

(d) Normalize to B-norm one, bj+ , = qj+ ,/llqi+, IIR. 

The B-orthogonalization step of the new vector to the previous ones is achieved by 
the generalized Gram-Schmidt orthogonalization process 

bj+l +qj+, - 2 (b:Bqj+,)bi. (2.3) 
i-l 

However, as we shall show, this algorithm can be considerably simplified by forming 
the new vector in such a way that qj+, can be calculated independently of L’j’, y”‘. 

In Algorithm I for j = 1 starting with a vector b, (b{Bb, = l), the vector q2 is given 
from step (b) by 

q2=Abl-a b 11 17 where a,, = b:Ab, 

and B-orthogonalizing q2 with respect to b, we obtain 

s,ts,-(b:Bq,)b,=Ab,-h,,b, with h,, =b:BAb,. 

Normalizing now q2 to B-norm one we have 

hz,b=Ab, -h,,b,, and h,, = b:BAb,. 

Forj=2,q,=AU2y’2’-~‘2’U2y . ‘*) B-orthogonalizing from (2.3) q3 with respect to 
b,, 6, and using the fact that A, y”’ = k’*‘y’*’ we obtain 

qj = (4 - h,,b, - Wdy:2 

where yy’ is the second component of the vector y ‘*) Finally, B-normalizing we have . 
that 

h,,b, =Ab, - h,,b, - hzzb, with h, = bfBAb,. 
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In the same way by an induction argument it is easy to show that 

hj+ljbj+, =Abj- 2 hijbi. 
ill 

(2.4) 

So the new vectors bj+, from (2.4) theoretically are identical to those given in 
Algorithm I. From (2.4) we can easily verify that b,i+, is B-orthogonal to all previous 
vectors bi, i= l,..., j, thus the B-orthogonalization step should not be necessary. 
However, loss of significant figures in the subtraction step of (2.4) means that the 
new vector after a few iterations is not longer B-orthogonal to the previous ones so a 
re-B-orthogonalization process would be necessary in practice. Another advantageous 
feature of writing the algorithm in this way is that we do not have to solve the small 
j X j eigenproblem (2.2) in every step which occupies a considerable amount of 
computer time as j increases. We solve the small eigenproblem after a certain number 
of iterations as a test for the termination of the algorithm. Summarising, the 
algorithm can be described as follows. 

Algorithm II. Initialization: start with b, # 0 such that b: Bb, = 1, calculate 
a , , = b: Ab, . Iteration: for j = 1, 2 ,... do: 

(a) Form w = Abj - xi=, hijbi, hii = b:BAb/. 

(b) Re-B-orthogonalize w to b,, i = I,..., j. 

(c) Normalize, b,i+ I = w/II w$. 

(d) Form u,.~+~ = b:Ab,i+, for i = l,..., j + 1. 

Relation (2.4) when applied for j = l,..., p can be written in matrix form as 

(2.5) 

where H is a p x p matrix of upper Hessenberg form with elements hi,i = b:BAb, and 
e,, is the unit vector with one in the pth position and zero elsewhere. In actual 
computation due to cancellation the vectors bi lose their B-orthogonality and in (2.4) 
an error vector O(e) must be added. For this particular behaviour we suggest re-B- 
orthogonalization. 

From (2.4) and step (d) of Algorithm II, we also see that the calculation of the new 
vector requires that all the previous vectors have to be kept in auxiliary store and 
fetched into fast computer memory when needed. As j increases the process of 
computing the bts becomes more expensive and memory demanding so the number p 
of steps is limited. However, it is possible to use the algorithm in an iterative manner. 
After having approximated a solution x (p) for a certain p we may find that the 
accuracy is unsatisfactory. In such a case we can use xCp) as starting vector and 
restart the algorithm. This process can be repeated as many times as needed to ensure 
a satisfactory accuracy. However, in physical problems the matrix-vector 
multiplications usually dominate in cost all the other operations in each step so it 
may be advantageous to choose p as large as possible. So at the end of Algorithm II 
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a test can be incorporated which can be used to determine whether the process must 
be stopped or restarted, that is: If Lcp), x(“) are sufficiently accurate then stop or else 
take b, = x(“) and restart from the beginning. The process will stop when the B-norm 
of the residual is less than a tolerance, that is, 

From the last relation we see that we can terminate the process when the last 
component of vector ycp’ is absolutely less than a tolerance even if h,, ,p is of 
moderate size. 

We shall show here the assertion made in the introduction that the eigenvalues of 
A, approximate those of (A, B). The proof is based on the Courant-Fischer theorem 
and is given in the following theorem. 

THEOREM. If Lj(Ap) = 1,; and kj(A, B) = /lj then d,! N Lj for j = l,.... p, where 
A,= ULAU, and ULBU,=I. 

Before we proceed to the proof of the theorem we give the Courant-Fischer theorem 
for the generalized case which states that: 

For every j = l,..., n and for any linear subspace UC_ R” with dim(U) = n + 1 - j 
if the eigenvalues of (A, B) are ordered as 1, > e.. > A,, then 

(2.6) 

where U = (x E iR”: (x, uJB = 0, i = l,..., j - 1). ui # 0. Relation (2.6) takes its 
minimum value only if the ui’s span an eigenspace of (1.1) corresponding to the 
eigenvalues A, ,..., Lj-, . 

Proof of the Theorem. We shall show that 

where U is as above, Applying Courant-Fischer theorem to A,, for a fixed p, we 
have 

Ai = min max 
Y’ApY 

OfYeW y’y 

with W = ( y E IRp: (y, qi) = 0, i = l,..., j - 1 ), qi # 0. Then 

2.; = min max gJ+wpY) = min max X’AX 
O#YEW (U,YPW,Y) O#XEU j&ii’ 

The last equation holds if we let ui = U,q, which completes the proof. 
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As we have mentioned, if UP was an eigenspace then A; = Aj but in practice UP is 
very far from such a space so 2; only approximate Aj or may even be different from 
them. 

3. NUMERICAL RESULTS AND CONCLUSIONS 

In order to reduce the amount of input-output operations the trial vectors bi and 
also the Bb,‘s are kept in core and only the matrix resides in external storage. These 
matrices are not declared explicitly but they are represented in a matrix-vector 
multiplication form. We thus reduce the storage and minimize the number of 
operations since zeros are not taken into account. 

Storage requirements are that only four vectors n x 1 need to be used in core 
memory plus the necessary storage for the small eigenproblem. The storage of the A, 
symmetric matrix requires p(p + 1)/2 locations, stored in a one-dimensional array in 
its upper triangular form. If a and p are the average number of nonzero elements per 
row of the matrices A, B and p the iteration number, the number of multi 
plicationsdivisions is n(a + p) + 4np + 2~2. 

In our examples Jacobi’s method has been used for the diagonalization of the small 
p x p eigenproblem A,. 

When the matrices A, B commute then formula (2.4) can be simplified in a 
Lanczos-type three-term recurrence formula as 

h p+&p+, =Ab,-h,,b,-h,.-,,b,--, (3.1) 

with h, as before. 
All the experiments described here have been performed on a CDC CYBER 72 

machine using a mantissa of 48 bits. We shall give two examples from differential 
equations which, although they are of relatively small order, illustrate well the prin- 
ciple of the algorithm. However, numerical examples tested for large matrices with 
elements randomly chosen show the same behaviour. 

Consider the problem of a vibrating string of length one fixed at the ends. This 
problem in certain cases leads to the ordinary differential equation 

y”+Ay=O with y(O) = 0, y( 1) = 0. 

To find the smallest eigenvalue A, we have the variational problem of minimizing the 
expression, called Rayleigh quotient, that is, 

R = I1 y’(x)’ dx 
i 
1’ y(x)’ dx = min (3.2) 

-0 0 

for all functions y. For intermediate eigenvalues, say, the jth-largest eigenvalue, the 
problem will be to minimize the max of (3.2) for those functions y which are 
subjected to the condition of being orthogonal to the (j - 1) first eigenfunctions. 
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TABLE I 

Lowest-Lying Eigenvalues for Example 2, Order of Matrices 77 x 77 

k Exact A >,, (linear splines) 

1 3.564024 3.6021696 
2 6.853892 6.9868646 
3 10.96623 11.489541 
4 12.33701 12.88591 I 
5 14.25610 14.874238 
6 19.73921 20.793830 

Approximating the two integrals in (3.2) using linear or quadratic spline functions we 
obtain a generalized eigenvalue problem. In the following we shall attempt to solve 
this problem for different kinds of approximations of the function y. In all our 
examples we start the algorithm using a vector with equal components. 

EXAMPLE 1. We shall approximate the integrals in (3.2) using linear spline 
functions with distances of the mesh points h = l/41 171. We have 40 interior points 
so we obtain a 40 x 40 system. The smallest eigenvalue of A,, was 9.874434 with 
~IY~IH = 0.3 x 10Pi5. The exact eigenvalue is 7-t’ = 9.8696044. The difference is due to 
the linear spline functions used to approximate ~1. In the case that quadratic spline 
functions were used the calculated value of the smallest eigenvalue of A ,5 was 
9.8696032 with Ilrlin =0.3 x lo-’ and IJJ\\‘)~ = 0.1 x 10 ‘. 

FIG. I. Convergence of the lowest-lying eigenvalues for the vibrating membrane problem, order of 
matrices 55 1 X 55 I. 
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EXAMPLE 2. In this example the same problem has been examined in two 
dimensions (vibrating membrane problem). Using a square grid with side length 
h = 0.25 and h = 0.1 we obtain two systems of order 77 x 77 and 551 x 55 1. respec- 
tively. For the 77 x 77 system the smallest eigenvalue has been found after only 15 
iterations with IIr$ = 0.4 X 10P8 and I~\\“1 = 0.4 X 10 -‘. To find more eigenvalues 
we continued the iterations up to 30. In Table I we give a listing of the smallest eigen- 
values of A,, together with the exact ones. Linear spline functions were used to 
approximate 4’. The difference in these results is mainly due to the spline fitting of the 
original differential equation. In Fig. 1 we give the convergence of the lowest eigen- 
values for the 55 1 X 55 1 system. 

The convergence properties of the algorithm have been studied by carrying out a 
series of test examples using different matrices. The dominant eigenvalues are not the 
only ones which converge rapidly. Actually best accuracy is tirst obtained for those 
eigenvalues which lie in the outer part of the spectrum. This generalizes the well- 
known property of the Lanczos method for symmetric matrices which states that the 
best accuracy is first achieved for the largest eigenvalues as well as the smallest. 
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